Down-regulation of caveolin-1 in glioma vasculature: modulation by radiotherapy.

نویسندگان

  • Anthony Régina
  • Julie Jodoin
  • Paul Khoueir
  • Yannève Rolland
  • France Berthelet
  • Robert Moumdjian
  • Laurence Fenart
  • Romeo Cecchelli
  • Michel Demeule
  • Richard Béliveau
چکیده

Primary brain tumors, particularly glioblastomas (GB), remain a challenge for oncology. An element of the malignant brain tumors' aggressive behavior is the fact that GB are among the most densely vascularized tumors. To determine some of the molecular regulations occuring at the brain tumor endothelium level during tumoral progression would be an asset in understanding brain tumor biology. Caveolin-1 is an essential structural constituent of caveolae that has been implicated in mitogenic signaling, oncogenesis, and angiogenesis. In this work we investigated regulation of caveolin-1 expression in brain endothelial cells (ECs) under angiogenic conditions. In vitro, brain EC caveolin-1 is down-regulated by angiogenic factors treament and by hypoxia. Coculture of brain ECs with tumoral cells induced a similar down-regulation. In addition, activation of the p42/44 MAP kinase is demonstrated. By using an in vivo brain tumor model, we purified ECs from gliomas as well as from normal brain to investigate possible regulation of caveolin-1 expression in tumoral brain vasculature. We show that caveolin-1 expression is strikingly down-regulated in glioma ECs, whereas an increase of phosphorylated caveolin-1 is observed. Whole-brain radiation treatment, a classical way in which GB is currently being treated, resulted in increased caveolin-1 expression in tumor isolated ECs. The level of tumor cells spreading around newly formed blood vessels was also elevated. The regulation of caveolin-1 expression in tumoral ECs may reflect the tumoral vasculature state and correlates with angiogenesis kinetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of caveolin-1 on the expression of tight junction-associated proteins in rat glioma-derived microvascular endothelial cells.

Caveolin-1 affects the permeability of blood-tumor barrier (BTB) by regulating the expression of tight junction-associated proteins. However, the effect is still controversial. In the present work, we studied the regulative effect of caveolin-1 on the expression of tight junction-associated proteins and BTB via directly silencing and overexpressing of caveolin-1 by recombinant adenovirus transd...

متن کامل

AHEART September 46/

Segal, Steven S., Suzanne E. Brett, and William C. Sessa. Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1167–H1177, 1999.—In isolated cell systems, nitric oxide synthase (NOS) activity is regulated by caveolin (CAV), a resident caveolae coat protein. Because little is known of this interactio...

متن کامل

Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters.

In isolated cell systems, nitric oxide synthase (NOS) activity is regulated by caveolin (CAV), a resident caveolae coat protein. Because little is known of this interaction in vivo, we tested whether NOS and caveolin are distributed together in the intact organism. Using immunohistochemistry, we investigated the localization of constitutive neuronal (nNOS) and endothelial (eNOS) enzyme isoforms...

متن کامل

Bone morphogenic protein receptor type 1a (BMPR1A) and Caveolin-1 associated with trastuzumab resistance of breast cancer cells

Trastuzumab is a specific monoclonal antibody used for therapeutic of the human epidermal growth factor receptor 2 (HER-2) -positive metastatic breast cancer. But, resistance to trastuzumab is a major obstacle in clinical efficiency.  During the past years, several studies have been done to find the mechanisms contributing to trastuzumab resistance. Previous studies have highlighted that bone m...

متن کامل

Regulation of cancer cell proliferation by caveolin-2 down-regulation and re-expression.

We investigated whether altering caveolin-2 (cav-2) expression affects the proliferation of cancer cells. Cav-2 was not detected in HepG2, SH-SY5Y and LN-CaP cells, and the loss of cav-2 expression was not restored by 5-aza-2'-deoxycytidine treatment. In contrast, C6, HeLa, A549, MCF7 and PC3M cells expressed cav-2. Effects of re-expression of exogenous cav-2 in HepG2, SH-SY5Y and LN-CaP cells,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience research

دوره 75 2  شماره 

صفحات  -

تاریخ انتشار 2004